A proof of convergence for Ant algorithms
نویسندگان
چکیده
A proof of convergence for Ant algorithms is developed. Ant algorithms were modeled as branching random processes: the branching random walk and branching Wiener process to derive rates of birth and death of ant paths. Substitution is then carried out in birth-death processes, which proves that a stable distribution is surely reached. This indicates that Ant algorithms converge with probability one. This analogy models Ant algorithms complexity parameters such as the number of cycles, the degrees of freedom of problem and the number of ants.
منابع مشابه
New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem
Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...
متن کاملA Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملA modified elite ACO based avoiding premature convergence for travelling salesmen problem
The Travelling Salesmen Problem (TSP) is one of the most important and famous combinational optimization problems that aim to find the shortest tour. In this problem, the salesman starts to move from an arbitrary place called depot and after visiting all nodes, finally comes back to depot. Solving this problem seems hard because program statement is simple and leads this problem belonging to NP...
متن کاملTHE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN OPTIMAL DESIGN OF TRUSSES USING METAHEURISTIC ALGORITHMS
Although Genetic algorithm (GA), Ant colony (AC) and Particle swarm optimization algorithm (PSO) have already been extended to various types of engineering problems, the effects of initial sampling beside constraints in the efficiency of algorithms, is still an interesting field. In this paper we show that, initial sampling with a special series of constraints play an important role in the conv...
متن کاملA Non-dominated Sorting Ant Colony Optimization Algorithm Approach to the Bi-objective Multi-vehicle Allocation of Customers to Distribution Centers
Distribution centers (DCs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 160 شماره
صفحات -
تاریخ انتشار 2004